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1. INTRODUCTION AND STATEMENT OF RESULTS

This paper is concerned with the estimation of the L 1 norm of the difference
between a function f of bounded variation in [0, 1] and the associated
variation-diminishing spline function with equidistant knots, 8m •nf, with
n ?: m ?: 2; see Schoenberg [4]. For f bounded on [0, 1] and for integers
m, n such that

n ?: m ?: 2,

the function 8m •n fis defined by

I

Sm.nf(x) = L: f(n-1g(m,j)) Nm,J(nx),
j=O

where

l=m+n-2,

(1.1)

(1.2)

(1.3)

g(m,j) =

U+ l)j
2(m - 1)'

j+ 1 - ;,

n - g(m, I - j),

j+1-m hm .i+1(x),

hm(x + m - j - 1),
Nm.l_;(n - x),

j = O, ... ,m - 2,

j = m - 1,... , n - 1,

j = n, ... , I,

j = O, ... ,m - 2,

j = m - 1,... , n - 1,
j = n, ... , I,

(1.4)

(1.5)
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SPLINES WITH EQUIDISTANT KNOTS

hm,k(x) = ~ tl (_I)k-i ik- m (~) (i - Xy;,-1

= ° for x < ° (k = 1,... , m).

for x ~ 0,

177

(1.6)

(1.7)

In (1.6), y+ stands for max(y,O). (Translated into the notation of
Schoenberg [4], g(m,j) = ti; hm,i+l(x) = Mix) for j = 0, ... , m - 2;
hm(x + m - j - 1) = Mix) for j = m - 1,... , n - 1. The Minx) are the
fundamental splines or B-splines for the case of equidistant knots i/n,
i = 1,..., n - 1.)

The total variation off in [0, 1] will be denoted by var(f). The sign f will
stand for Coo .

THEOREM 1. Iff is of bounded variation in [0, 1], then

r ISm.nf(x) - f(x)1 dx :( n-1Cmvar(f),
o

where

Cm = f Ix - ; Ihm_1(x)dx.

(1.8)

(1.9)

The sign of equality holds in (1.8) if f is a step function whose saltuses
are located at ai = (ki - (m/2))/n, i = 1, , r, where k 1 , ... , kr are integers
such that k 1 ~ m, ki+l - k i ~ m, i = 1, , r - 1, kr :( n, and either
f(x-) :(f(x) :(f(x+) or f(x-) ~ f(x) ~ f(x+) for °< x < 1.

The constants Cm satisfy

Cm = (67T)-1/2 m 1 /2 + 0(m1/2)

(
m + 2 )1/2

Cm ~ 12 ' m ~2,

as m~ 00.

(1.10)

(1.11)

The following theorem shows that if f is a fixed step function satisfying
some restrictions, then the upper bound in (1.8) is nearly attained if m and
njm are sufficiently large.

THEOREM 2. Let °= ao < a1 < ... < ar < ar+l = 1,

f(O) = b1 , f(1) = br+1 ,

f(x-) :(f(x) :(f(x+) or f(x-) ~f(x) ~f(x+), °< x < 1.

f(x) = bi if ai-l < x < ai, i = 1,... , r + 1, (1.12)

(1.13)

(1.14)
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Then if
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m ~ min{2a1 , a2 - a1 , ... , ar - ar - 1 , 2(1 - ar )}, (1.15)n

we have rISm.nf(x) - f(x) Idx
o

1 rim
= ntl I hi+! - hi I I x - T + di Ihm-1(x) dx

1 II m-
1

1;): nvar(f) x - -2- hm-1(x) dx

(1.16)

(1.17)

1= - var(f) Cm(I + O(m-l))
n

where di is the fractional part of nai + m12,

as m -+ 00, (1.18)

di = nai + ~ - [nai + ~]. (1.19)

Theorems 1 and 2 are proved in Sections 3 and 4, respectively. In Section 2,
some needed properties of the fundamental splines hm .k are derived, and a
probabilistic interpretation of hm .k is mentioned. Extensions to L p norm
are considered in Section 5. In the Appendix, it is shown that if A belongs
to a certain class of linear, constant-preserving operators, then the supremum
of the ratio f~ I Af - f I dx/var(f) over the functions f of (positive) bounded
variation is equal to its supremum over the one-step functions.

Theorems 1 and 2 are similar to the results proved in [3] for the Bernstein
polynomials,

O";;x~1.

Theorem 3 of [3] implies that iff is of bounded variation in [0, 1], then

f I Bnf(x) - f(x)1 dx ~ (2/e)1/2 n-1/2J(f) + n-1 var(f), (1.20)
o

where J(f) = f~ x1/2(1 - X)1/2 I df(x)l. By Theorem 4 of [3], if f is a step
function of bounded variation in [0, 1] with finitely many steps in every
closed subinterval of (0, 1), then, as n -+ 00,

rI Bnf(x) - f(x)\ dx = (2/rr)1/2 n-1/2J(f) + 0(n-1 /2). (1.21)
o



SPLINES WITH EQUIDISTANT KNOTS 179

A comparison of (1.21) with Theorem 2 shows that, so far as the approxi
mation of step functions is concerned, the functional J(f) plays the same
role in the case of Bernstein polynomials as var(f) does in the case of the
splines Sm.n' [Note that J(f) < t var(f).] Furthermore, the upper bound
on the L 1 norm of the approximation error is of order n-1m1/2 in the case of
Sm.n , and of order n-1 / 2 in the case of Bn . Since Sm.nfdepends on m + n - 1
values of f, and Bnf on n + 1 values, the approximation by Sm.nf is com
parable to that by Bm+n- 2f As m + n ---+ 00, the ratio, n-1m1/ 2 divided by
(m + n - 2)-1/2, is asymptotically equal to (mjn)I/2 (1 + mjn)I/2. Thus
insofar as our bounds are indicative of the goodness of approximation, it is
more favorable to approximatefby the spline Sm.nfwith mjn small than by
the comparable Bernstein polynomial. This result is similar to the known
facts concerning the sup norm in the case of approximation of continuous
functions. According to Popoviciu and Schoenberg, respectively (see [4], in
particular, Theorem 10), we have

sup I Bnf(x) - f(x) I < fw,(n-1 / 2),
x

sup ISm.nf(x) - f(x)1 < {(mjI2)1/2 + I} w,(n-1),
x

where w,(-) denotes the modulus of continuity of f If f has a bounded
derivative, the two upper bounds are of order n-1/2 and n-1m1/2, respectively.

2. SOME PROPERTIES OF THE FUNDAMENTAL SPLINES

In this section, some properties of the functions hm .k are derived which
will be used in the proofs of the theorems. It is well-known ([1], [4]) that
hm•k is a probability density concentrated on the interval (0, k):

hm.k(x) ;;:: 0, hm.k(x) = 0 unless 0 < x < k, {' hm.ix) dx = 1; (2.1)
-00

and that

I

L Nm.lx) = 1.
j~O

(2.2)

(2.3)

Let

Hm(x) = Hm.m(x) = r hm(y) dy. (2.4)
-00
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From (1.6) we obtain

Hm.k(x) = 1 - ~, f (_l)k-i ik- m ( ~) (i - x)~
. i-I l

for X? 0, k = 1,... , m. (2.5)

Let also, for 1 < k < m,

m' I'"Gm,k(X) = (k _ I)! (~ _ k)! 0 t k- l(1 - t)m-k dt,

LEMMA 1. The following identities hold true:

o < x < 1. (2.6)

k
m hm.k(x) = Hm-l,k-I(X) - Hm-l.k(x), k = 2,... , m - 1, (2.7)

hm(x) = Hm-tCx) - Hm_l(x - 1), (2.8)

Hm.k(x) = r Hk(xjt) dGm,k+l(t), k = 1,... , m - 1, (2.9)
o

l k

L Nm.;(x) = 1 - L Nm,;(x)
j~k+1 i=O

!
Hm-l.k+l(X),

= Hm-l(x - k - 2 + m),
1 - H m-1,l-k(n - x),

k = O, ... ,m - 2,
k = m - 1,... ,n - 1, (2.10)
k = n,... , 1- 1.

Remark. Identity (2.8) is well-known; the others may be new. Relations
(2.7) and (2.10) can be extended to the case of nonequidistant knots by using
the results of Greville in the supplement to reference [4]. The second identity
(2.10) is analogous to the well-known relation between the binomial and the
beta distribution functions, r:;:k (';') x i(l - x)m-i = Gm.k(x).

Proof Since m= (kil) + (tD, we obtain from (1.6) for k = 2,... , m
and X? 0

~ hm.k(x) = - (k ~ I)! E: (_l)k-I-ii
k
-

m
(k ----; 1) (i - X)~-l

+ 1 ~ (_l)k-i ·k-m (k - I) (. _ )m-l
(k - I)! f::l l i-I l X + .

The first of the two terms on the right is equal to H m-l,k-l(X) - 1 by (2.5).
Since (~.=D = ilk(~), the second term is equal to 1 - Hm-l,k(x) for k < m - 1,
and (2.7) follows. For k = m it is equal to 1 - Hm _ 1(x - 1), and (2.8)
follows.
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To prove (2.9) we note that by (2.5) with m = k,
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For x ? i the last integral is zero, and for °< x < i,

II. -lk _'k m! Jl (X)k m-k-l
o(l-Xt )+dGm.k+1(t)-1 k!(m-k-I)! ,"Ii t-T (I-t) dt

The last equality is obtained by the substitution s = (t - xli)/(I - xli) and
evaluation of a beta integral. Identity (2.9) now follows from (2.5).

The first equality in (2.10) is due to (2.3). From (1.5), (2.7) and the easily
verified identity

we obtain for k = 0,..., m - 2

which proves the first part of the second equality in (2.10). In particular,
'L7,:o2 Nm.;(x) = I - Hm_1(x). The remaining parts of (2.10) follow from
(2.8) and (1.5).

It is of interest to note the following probability interpretation of the
fundamental splines hm•k • Let U1 , U2 , ... be mutually independent random
variables, uniformly distributed on (0,1), and let Um,l ~ Um,2 ~ ... ~ Um,m
denote the ordered U1 , U2 , ... , Um . Then hm,k is the probability density of
Sm,k = Um.1 + ... + Um,k, the sum of the k smallest among U1 , ... , Um .
Thus Hm,k(X) = Pr{Sm,k < x}. It is known that Gm.k(x) = Pr{Um.k < x}.
Identity (2.9) expresses the fact that, for 1 ~ k ~ m - 1, Sm,k is distributed
as the product Sk.kUm.k+1' where Sk.k and Um,k+1 are mutually independent
with respective distribution functions H k and Gm •k +1 .

3. PROOF OF THEOREM 1

The operator Sm,n is linear, preserves constants [due to (2.3)], and Sm,nf
depends on f only through values off on a finite subset of [0, 1], It follows
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from Theorem A in the Appendix that iff is of bounded variation in [0, 1],
then

f ISm.nj(x) - j(x)1 dx ~ var(f) sup II ISm.nUa(x) - Ua(x) Idx, (3.1)
o O<a<1 0

where

if x ~ a, uix) = 1 if x> a. (3.2)

Hence inequality (1.8) will be proved if we show that

sup 5.
1

I Sm.nuix) - uix)j dx = n-1Cm ,
O<a<1 0

where Cm = j I x - ml2 [ hm_1(x) dx.
We have

(3.3)

( 1 Sm.nua(x) - ua(x) I dx = n-1r ISm.nua (:) - uan(x) Idx, (3.4)

Sm.nua (~) = t ~"ix),
n j=k(a)+1

where k(a) = k if g(m, k) ~ na < gem, k + 1), k = 0,... , I - 1. Thus if
gem, k) ~ na < gem, k + 1) then, by (2.10),

k = O,... ,m - 2,
k = m - 1,... , n - 1, (3.5)
k = n, ... ,1- 1.

Let °~ na < ml2 (= gem, m - 1». Then k(a) ~ m - 2 and, with
k(a) = k,

na < gem, k + 1) = t(k + 2)(k + 1)/(m - 1) ~ k + 1.

Hence uan(x) = 1 for x > k + 1. Since also Hm-l.k+l(x) = 1 for x > k + 1,
we have

nrI Sm.nuix) - Ua(x) \ dx
o

f
k+l

= [ Hm - 1 •k+l(X) - unix)Idx
o

fna fk+l
= Hm-1.k+l(X) dx + {l - Hm-1.k+l(X)} dx.

o na
(3.6)
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(3.8)

In the interval gem, k) < na < gem, k + 1) [in which k(a) = k is constant],
the derivative with respect to a of the right side of (3.6) is increasing. Hence
the supremum, for a in that interval, is one of the two values at the endpoints
of the interval. Therefore,

n sup f1\ Sm.nua - Ua Idx = max{Im.1 ,... , Im.m-1, Jm.1 ,... , Jm.m-1}, (3.7)
o<;;na<m/2 0

where

I m.k = f I Hm_u(x) - UE(m.k-1)(x)1 dx,

Jm.k = f I Hm_u(x) - UE(m.k)(x)1 dx.

Next, let ml2 ~ na < n - (mI2)( = gem, n - 1)). Then m- I ~ k(a) ~ n - 2
and, with k(a) = k,

m
k + 2 - m~ k + 1 - 2 = gem, k) ~ na < gem, k + 1)

m
=k+2-2~k+1.

Since Hm_1(x - k - 2 + m) = 0 for x < k + 2 - m and =1 for x> k + 1,
it follows from (3.4) and (3.5) that

I I Sk+1
n ISm.nUa - Ua I dx = I Hm-1(x - k - 2 + m) - Uan(x)I dx

o k+2-m

= Im
-
1
I Hm- 1(y) - ub(y)1 dy, (3.9)

o

where b = na +m - k - 2. The interval gem, k) ~ na < gem, k + 1) corre
sponds to ml2 - 1 ~ b < m12, that is, gem, m- 2) ~ b < gem, m - 1).
It follows, as above, that

1

sup n I I Sm.nUa - Ua I dx = max(Im.m-1, Jm.m-1). (3.10)
m/2<;;na<n-m/2 0

Finally, it can be seen from (3.5) that the supremum for n - (mI2) ~ na < n
is equal to the supremum for 0 < na ~ m12. Hence, and by (3.7) and (3.10),

n sup f1 ISm.nua - Ua I dx = max{Im.1 ,... , Im.m-1 , Jm.1 ,... , Jm.m-1}. (3.11)
O<a<l 0

Referring to (3.8), it is easy to show that

I m.k = JI x - gem, k - 1)\ dHm_u(x),

Jm.k = f I x - gem, k)1 dHm_u(x).
(3.12)
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Due to (2.2),
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Im,m~1 = f Ix - m ;- 21 dHm_1(x)

= f Ix - ; IdHm_lx) = Jm,m-l, (3.13)

which, by (1.9), is equal to em . Hence, (3.3) will be proved if we show that

and k = 1,... , m - 2. (3.14)

From (2.9) we obtain

hm-1,,lx) = f 1 hk(xt-1) t-1dGm_1,k+1(t),
o

k = l, ...,m - 2.

Hence, by (3.12),

Jm,k = fot> I x - gem, k)1 r hk(xt-1) t-1dGm_l.k+1(t) dx
-ot> 0

= fot> rI ty - gem, k)1 dGm-1.k+1(t) hk(y) dy
-ot> 0

~ L: If (ty - gem, k)) dGm-l.k+1(t) Ih,ly) dy

f'" I k + 1 I= -ot> -m y - gem, k) h,ly) dy.

An analogous inequality, with gem, k) replaced by gem, k - 1), holds for
I m •k • Thus we have

where

k = 1,... ,m - 2, (3.15)

k+lfAk = -m- I x - Ok Ihix)dx,

(3.16)

m
Ok = k + 1 gem, k - 1), (3.17)

Note that Am-1 = Im.m-1 and Bm - 1 = Jm,m-l' Hence to prove (3.14), it
is sufficient to show that

and k = 2,... , m - 1. (3.18)
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According to (2.8), hix) = J~ hk_1(X - t) dt. Hence,

f I x - ak Ihix) dx = f I x - ak I( hk-ix - t) dt dx

= If IY + t - ak I dt hk-1(y) dy
o

?'o f I( (y + t - ak) dt Ihk-1(y) dy

= flY + t - ak I hk-1(y) dy.

flY + t - ak I hk-1(y) dy

== I I k - t - ak - Y I hk-1(y) dy

= ~ f (I y + t - ak I + Iy + t + ak - k I) hk-1(y) dy

185

= f max (I y - k ~ 1 I, Iak - ~ i) hk-1(y) dy. (3.19)

Hence,

On the other hand, by (3.19) with ak - t replaced by ak- 1 and (3.16),

A k-1 = ; I max (\ x - k 2 1 I, Iak-l - k 2 1 I) hk_1(X) dx. (3.21)

Hence the first inequalities (3.18) are satisfied if

or equivalently, if

k = 2,... , m - 1. (3.22)
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Now
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m-k
---->0
m(m - I)

mg(m,k - 1) - (k i 1)

= k m(k - 1) - (m - 1)(k + I) = k -2m + k + 1 < 0
2(m - 1) 2(m - 1)

for 1 ~ k ~ m - 1, hence,

Igem, k - 1) - ~ (k i 1)1-1 gem, k - 2) - ~ (~)I

_ k(2m - k - 1) - (k - 1)(2m - k)
- 2m(m - 1)

for 2 ~ k ~ m - 1, and (3.22) holds true.
Replacing Ok by bk , we see that the second inequalities (3.18) are satisfied

if

Igem, k - 1) - ~ (~)I ~ Igem, k) - ~ (k t 1)1,
k = 2"." m - 1. (3.23)

This is true since gem, k) - (kt1)lm = et1)lm(m - 1). This completes the
proof of (3.3) and thus of inequality (l.8).

The stated condition for equality in (1.8) follows from Theorem 2, in
particular (U6) with d; = 0 for all i.

To prove inequality (1.10), we observe that

Since Hm - 1 is the distribution function of the sum of m - 1 independent
random variables whose mean and variance are 1/2 and 1/12, respectively,
we have

f m-1
x dHm-1(x) = 2 ' f ( m - 1 )2 m - 1

x - 2 dHm_1(x) = 12 .

Therefore, f (x - m12)2 dHm _ 1 = (m - 1)/12 + 114 = (m + 2)/12, and (1.10)
follows.

Finally, to prove (U1) we write

f
m - 1

em = I Hm_1(x) - um/~x)1 dx
o

f
m /2 f(m-2)/2

= Hm_lx) dx + Hm-1(x) dx.
o 0
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Hence as m -+ 00,

f
(m-11/2

em = 2 Hm_1(x) dx + 0(1).
o

Let

* ( m - 1 ( m - 1 )1/2)H m- 1(x) = Hm- 1 2 + x 12 .

187

(3.24)

(3.26)

Referring to the preceding paragraph, it follows from the central limit
theorem (see, e.g., [2], p. 253) that

M~ H:'_l (x) = <P(x) = (27T)-1/2r exp(-t 2/2) dt (3.25)
-00

uniformly for -00 < x < 00.

Now

f<m-1l/2 ( m - 1 )1/2 JO *
o H m_1(x) dx = 12 -00 H m- 1(x) dx.

For 0 E ( - 00,0) fixed, fa H:'_l (x) dx -+ f~ <P(x) dx as m -+ 00. By Chebyshev's
inequality, H:'_l (x) ~ Ix 1-2 for x < 0, hence .1-00 H:'_l (x) dx ~ Ia 1-1 for
o < O. Therefore

J
o JO 0

M~ H::'_l (x) dx = <P(x) dx = - J y<P'(y) dy
-0:;) -co -co

= r<P"(y) dy = <P'(O) = (27T)-1/2. (3.27)
-00

Equality (1.11) now follows from (3.24), (3.26), and (3.27). Theorem 1 is
proved.

4. PROOF OF THEOREM 2

A step functionfwhich satisfies (1.12) and (1.13) may be written

r r

f(x) = f(O) + I. (h;+! - f(o;)) uaix) + I. (f(o;) - h;) u~ix),
;~1 ;=1

where uix) is defined in (3.2) and

Ua+(x) = ua(x+) = 0 or 1 according as x < 0 or x ~ a.
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Hence,

Let
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r

Sm,nf(x) - f(x) = L (bi+l - f(ai)){Sm,nualx ) - uaj(x)}
i~l

r

+ L (f(ai) - bi){Sm.nU~lX) - u~lx)}. (4.1)
i=1

i = 1,... , r.

By (1.19), ki = nai + ml2 - di , and since 0 ~ di < 1, condition (1.15)
implies

By (3.5),

i = 2,... , r; k r ~ n. (4.2)

if m - 1 ~ k i ~ n. (4.3)

Also, Sm.nut.(x) = Sm.nua(x) unless nai + ml2 is an integer, in which case. .
if m ~ k i ~ n + 1. (4.4)

It follows that if nx < k i - m or nx > k i , then

and

Hence, and due to (4.2),

Sm.nf(x) - f(x) = (bi+l - f(ai)){Sm.nuaix ) - uaix )}

+ (f(ai) - bi){Sm.nu~lx) - u~lx)}

if k i - 1 < nx < k i , i = 1,... , r, (4.5)

where ko = 0; and Sm,nf(x) - f(x) = 0 for nx > kr •

Due to condition (1.14), the two terms on the right of (4.5) are of the same
sign (except at x = ai)' Therefore,

r ISm.nf(x) - f(x)! dx = ±11 bi+l - f(ai)1 (j I Sm.nUaj(X) - Ualx) I dxl
o ~=1 k 1- 1

k·

+ I f(ai) - bi If' ! Sm.nu~ix) - U~j(x)1 dx.
k i - 1
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The limits of integration, ki - l and k i , may be replaced by - 00 and 00.

For the first integral in the ith term on the right we obtain, using (4.3), as
in the proof of Theorem 1,

Due to the symmetry of hm _ l , this is also equal to

The second integral can be seen to have the same value. [Note that for
mula (4.4) applies only when di = 0.] Since by (1.14),

I bi+l - f(ai)1 + If(ai) - bi I = 1 bi+! - bi I,

this implies (1.16).
Inequality (1.17) follows from the well-known fact that if H(x) is a

probability distribution function and H(c) = Ij2, then J I x - y [ dH(x) is
minimized at y = c. Note that var(j) = L:=l Ibi+l - bi I.

Finally,

Cm - f Ix - m ;- 1 Ihm_l(x) dx

= f (I x - ; I-I x - m ;- 1 I) hm_l(x) dx

= f::~l (~ -I x - m ;- 1 I) hm-ix) dx

~ ~ lHm- l (;) - Hm - l (; - I)! = ~hm (; ).

By the central limit theorem for densities (see, e.g., [2], p. 489), hm(mj2) =
O(m-l / 2). Since, by (1.11), Cm is asymptotically proportional to ml / 2, these
facts imply (l.18). Theorem 2 is proved.

5. EXTENSION TO L p NORM, P > 1

Theorem 1 can be extended as follows: If f is of bounded variation in
[0, 1], then for p ?" 1

lf
l Il/P

o ISm.nf(x) - f(x)IP dx \ ~ n-l/PCm(p) var(j), (5.1)
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where,
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m;;:?: 2,

Cm(p) = max{Im.l(P), ... , Im.m- 1(p), Jm.1(p),· .. , Jm.m- 1(p)},

Im./c(p)P = JI Hm-l./C(x) - U~(m./c-l)(X)IP dx,

Jm.ip)p = f I Hm-u(x) - u~(m./c)(x)IP dx.

The constants Cm(p) satisfy

(
m + 2 )1/(2Pl

Cm(p) ~ 12 '

(5.2)

(5.3)

(5.4)

Cm(p)P = 3-1 / 2r <f>(x)P dx m1 / 2 + o(m1 / 2)
-00

as m -- 00, (5.5)

where <f>(x) is defined in (3.25).
The proof of (5.1) is essentially the same as that of the corresponding part

of Theorem 1. (See Remark 2 at the end of the Appendix.) Inequality (5.4)
follows from (LlO) since Cm(p)P ~ Cm(l) = Cm for P > 1. However,
(5.5) with P > 1 cannot be proved in the same way as (1.11). The reason
is that for P > 1, the maxima of Im./c(p) and Jm./c(p) with respect to
k(1 ~ k ~ m - 1) are not, in general, attained at k = m - 1 [although (5.5)
implies that this is true in an asymptotic sense as m -- 00]. The main steps
in the proof of (5.5) are as follows.

Let (-t(m, k) and a2(m, k) denote the mean and the variance of the distribu
tion Hm./c, and let H::'.ix) = Hm.k«(-t(m, k) + a(m, k)x). The following is
crucial:

LEMMA 5.1. For 0 E (0,1) arbitrarily fixed,

lim H:' k(X) = <f>(x)
m-)oo •

uniformly in x( - 00 < x < 00) and uniformly in k for om < k ~ m.

The proof of Lemma 5.1 makes use of the representation (2.9) and of the
asymptotic normality of the distributions Hk and Gm.k+l .

It is easy to show that Cm(p) behaves asymptotically as max{Jm.l(P)"",
Jm.m- 1(p)}, and that for k ~ om, Jm.k(p)P ~ Jm.k(1) ~ Com1 / 2, where C is
an absolute constant. Hence, with 0 > 0 suitably fixed, the maximum of
Jm./c(p) may be taken over the range 8m < k ~ m - 1. With the help of
Lemma 5.1, it can be shown that asymptotically as m -- 00,
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uniformly for Om < k < m. The right-hand side increases with k for k :'S; m,
and (5.5) follows.

There is a straightforward but uninteresting extension of Theorem 2 to
the case p > 1. Under the conditions of Theorem 2, as m - w, the asymp
totic value of the left-hand side of (5.1) differs from that of the right-hand
side in that var(f) = L;~1 I bi+! - bi I is replaced by (~:;=1 Ibi+! - bi IP}I/ p

•

Thus ifp > 1, we do not have asymptotic equality in (5.1) for a class of step
functions as extensive as that of Theorem 2.

ApPENDIX

Let BV and L1 denote the classes of functions of bounded variation in
[0, 1] and of Lebesgue integrable functions on [0, 1], respectively. Let
ua(x) = 0 or 1 according as x :'S; a or x > a.

THEOREM A. If A: BV - L1 is a linear, constant-preserving operator, and
Af depends on f only through values off on a finite subset of [0, 1], then for
every fE BV

III Af(x) - f(x)[ dx :'S; var(f) sup II IAua(x) - ua(x)! dx. (A.l)
o O<a<1 0

Proof Let Af depend on f only through f(ai), i = 1, , m, where
o :'S; ai :'S; 1. Given € > 0, choose n ~ m and 0 = bo < b1 < < bn - 1 <
bn = 1 so that the numbers ai are among the hj and max;(bi+l - hi) :'S; €.

First, let f be a nondecreasing bounded function on [0, 1]. Define the
function.fo by

.fo(O) = f(O), .fo(x) = f(b;) j = l,oo.,n.

Since fO(ai) = f(ai) for all i, we have Afo = Af Also,

so that f~ If -.fo Idx :'S; €(f(l) - /(0)) = € var(f). It follows that

r! Af - fl dx = J.l /410 - /1 dx :'S; J.l I A.fo - fo I dx + €var(f). (A.2)
o 0 0

We can write .fo(x) = /(0) + L;'=-: CjUbj(X), O:'S; x :'S; 1, where Cj =
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f(bi+1) - f(b j ) ;?; O. Since the operator A is linear and preserves constants,
n-1

we have Afo - fo = Lj~o ciAub; - Ub)' Therefore,

1 n-1 n-1I I Aj~ - fo I dx ~ L Cj f I AUbi - Ubi I ~ L Cj sup f I AUa - Ua I dx
o i~O i~O O(;a<l

= var(f) sup f I AUa - Ua I dx.
O(;a<l

(A.3)

Since E is arbitrary, inequality (A. 1), for f nondecreasing, follows from (A.2)
and (A.3).

A function I of bounded variation on [0, 1] can be represented as
I = II -/2' whereII and/2 are nondecreasing and var(f) = var(lI) + var(};).
Since the operator A is linear, AI - I = (AlI - II) - (Aj; - 12), implying

II II 1IAI - II dx ~ I All - 111 dx + I I Aj; - 121 dx,
o 0 0

and since (A.l) is true with I replaced by 11 and j; , it is true in the general
case.

Remark 1. The assumption that AI depends on I only through values
of Ion a finite set is clearly not essential. For instance, it can be replaced
by the assumption that f I AI I dx ~ M f II I dx for IE BV.

Remark 2. Theorem A is also true with L 1 norm replaced by L p norm,
p > 1. The proof is virtually the same and uses Minkowski's inequality.

Remark 3. Under the condition of Theorem A we have the following
counterpart to inequality (A.I):

III(Af(x) - f(x)) dx I~ var(f) sup III (Aua(x) - ua(x)) dx I. (AA)
o O(;a<l 0

The proof is similar to that of (A.l). The special case of (AA) with
Af(x) = !(YlN",l+1), where Y1 ,..., YN is a sequence in [0, 1), is due to
J. F. Koksma [5], except that in Koksma's inequality the Ua in (AA) are
replaced by the indicator functions of the subintervals [0:, [3) of [0, 1].
Koksma's inequality has been extended by Hlawka [6] to the multidimen
sional case; see also Zaremba [7]. The extension of inequalities (A.I) and
(AA) to the multidimensional case, under conditions analogous to those of
Theorem A, is not difficult. I am indebted to Professor Walter Philipp for
directing my attention to the references here mentioned.
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